On directional Metropolis-Hastings algorithms

نویسندگان

  • Jo Eidsvik
  • Håkon Tjelmeland
چکیده

Metropolis–Hastings algorithms are used to simulate Markov chains with limiting distribution equal to a specified target distribution. The current paper studies target densities on R. In directional Metropolis–Hastings algorithms each iteration consists of three steps i) generate a line by sampling an auxiliary variable, ii) propose a new state along the line, and iii) accept/reject according to the Metropolis–Hastings acceptance probability. We consider two classes of algorithms. The first uses a point in R as auxiliary variable, the second uses an auxiliary direction vector. The directional Metropolis–Hastings algorithms considered here generalize previously proposed directional algorithms in that we allow the distribution of the auxiliary variable to depend on properties of the target at the current state. By letting the proposal distribution along the line depend on the density of the auxiliary variable, we then identify proposal mechanisms that give unit acceptance rate. Especially when we use direction vector as auxiliary variable, we get the advantageous effect of large moves in the Markov chain and the autocorrelation length of the chain is small. We illustrate the algorithms for a Gaussian example and in a Bayesian spatial model for seismic data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directional Metropolis–Hastings algorithms on hyperplanes

In this paper we define and study new directional Metropolis–Hastings algorithms that propose states in hyperplanes. Each iteration in directional Metropolis–Hastings algorithms consist of three steps. First a direction is sampled by an auxiliary variable. Then a potential new state is proposed in the subspace defined by this direction and the current state. Lastly, the potential new state is a...

متن کامل

Norges Teknisk-naturvitenskapelige Universitet Directional Metropolis–hastings Updates for Posteriors with Nonlinear Likelihoods Directional Metropolis–hastings Updates for Posteriors with Nonlinear Likelihoods

In this paper we consider spatial problems modeled by a Gaussian random field prior density and a nonlinear likelihood function linking the hidden variables to the observed data. We define a directional block Metropolis–Hastings algorithm to explore the posterior density. The method is applied to seismic data from the North Sea. Based on our results we believe it is important to assess the actu...

متن کامل

Optimal Proposal Distributions and Adaptive MCMC

We review recent work concerning optimal proposal scalings for Metropolis-Hastings MCMC algorithms, and adaptive MCMC algorithms for trying to improve the algorithm on the fly.

متن کامل

Optimal Proposal Distributions and Adaptive MCMC by Jeffrey

We review recent work concerning optimal proposal scalings for Metropolis-Hastings MCMC algorithms, and adaptive MCMC algorithms for trying to improve the algorithm on the fly.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and Computing

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2006